Abstract

Diabetes promotes renal sympathetic hyperactivity, autonomic imbalance, and cardiovascular and renal dysfunction. Bilateral renal denervation (BRD) has emerged as a treatment for diabetes; however, the mechanisms that underlie the beneficial effects of BRD are unknown. AimsThe present study evaluated the effects of BRD on autonomic, cardiovascular, metabolic, and renal function in streptozotocin-diabetic rats. Main methodsWistar rats were separated into three experimental groups: control (CTR), diabetic (DM), and diabetic that underwent BRD (DM BRD). BRD was performed two weeks after STZ-diabetes induction, the experiments were performed four weeks after DM induction. This study evaluated sympathetic vasomotor nerve activity in different territories (renal, lumbar and splanchnic), arterial baroreceptor reflex, metabolic and renal function. Key findingsBRD significantly reduced glycemia, glycosuria, albuminuria, and SGLT2 gene expression in the kidney in DM rats. Renal sympathetic nerve activity (rSNA) was significantly increased and splanchnic sympathetic nerve activity (sSNA) was significantly decreased in DM rats, without changes in lumbar sympathetic nerve activity (lSNA). BRD was able to normalize sSNA and significantly increase lSNA in DM rats compared to control rats. Additionally, cardiac baroreceptor sensitivity was impaired in DM rats, and BRD significantly improved baroreflex sensitivity. SignificanceOur data suggest that renal nerves play an important role in autonomic, cardiovascular, and renal dysfunction in STZ-DM rats. Thus, sympathetic renal hyperactivity should be considered a possible therapeutic target in diabetic patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call