Abstract

Although respirators and filters are designed to prevent the spread of pathogenic aerosols, a stockpile shortage is anticipated during the next flu pandemic. Contact transfer and reaerosolization of collected microbes from used respirators are also a concern. An option to address these potential problems is UV irradiation, which inactivates microbes by dimerizing thymine/uracil in nucleic acids. The objective of this study was to determine the effects of transmission mode and environmental conditions on decontamination efficiency by UV. In this study, filters were contaminated by different transmission pathways (droplet and aerosol) using three spraying media (deionized water [DI], beef extract [BE], and artificial saliva [AS]) under different humidity levels (30% [low relative humidity {LRH}], 60% [MRH], and 90% [HRH]). UV irradiation at constant intensity was applied for two time intervals at each relative humidity condition. The highest inactivation efficiency (IE), around 5.8 logs, was seen for DI aerosols containing MS2 on filters at LRH after applying a UV intensity of 1.0 mW/cm(2) for 30 min. The IE of droplets containing MS2 was lower than that of aerosols containing MS2. Absorption of UV by high water content and shielding of viruses near the center of the aggregate are considered responsible for this trend. Across the different media, IEs in AS and in BE were much lower than in DI for both aerosol and droplet transmission, indicating that solids present in AS and BE exhibited a protective effect. For particles sprayed in a protective medium, RH is not a significant parameter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.