Abstract
An inhomogeneous linear refractive index profile, such as that occurring in biological tissues, is shown to significantly alter stimulated Raman scattering (SRS) and coherent anti-Stokes Raman scattering (CARS) microscopy images. Our finite-difference time-domain simulations show that near-field enhancement and microlensing can lead to an increase of an object's perceived molecular density by a factor of nine and changes in its perceived position by 0.4 μm up to 1.0 μm. Thus the assumption that SRS scales linearly and CARS quadratically with density does not always hold. Furthermore, the inhomogeneous linear index can cause false CARS and AM-SRS signals, even for a homogeneous nonlinear susceptibility.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have