Abstract

The effects of rare earth (RE) on the microstructure and impact toughness of low alloy Cr-Mo-V bainitic steels have been investigated where the steels have RE content of 0 to 0.048 wt.%. The results indicate that the normalized microstructures of the steels are typical granular bainite (GB) composed primarily of bainitic ferrite and martensite and/or austenite (M-A) constituents. The M-A constituents are transformed into ferrite and carbides and/or agglomerated carbides after tempering at 700 °C for 4 h. The addition of RE decreases the onset temperature of bainitic transformation and results in the formation of finer bainitic ferrite, and reduces the amount of carbon-rich M-A constituents. For the normalized and tempered samples, the ductile-to-brittle transition temperature (DBTT) decreases with increasing RE content to a critical value of 0.012 wt.%. Lower DBTT and higher upper shelf energy are attributed to the decreased effective grain size and lower amount of coarse agglomerated carbides from the decomposition of massive M-A constituents. However, the addition of RE in excess of 0.012 wt.% leads to a substantial increase in the volume fraction of large-sized inclusions, which are extremely detrimental to the impact toughness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call