Abstract

Rain within the footprint of the SeaWinds scatterometer on the QuikSCAT satellite causes more significant errors than existed with its predecessor, the NASA scatterometer (NSCAT) on Advanced Earth Observing Satellite-I (ADEOS-I). Empirical relations are developed that show how the rain-induced errors in the scatterometer wind magnitude depend on both the rain rate and on the wind magnitude. These relations are developed with collocated National Data Buoy Center (NDBC) buoy measurements (to provide accurate sea surface winds) and simultaneous Next Generation Weather Radar (NEXRAD) observations of rain reflectivity. An analysis, based on electromagnetic scattering theory, interprets the dependence of the scatterometer wind errors on volumetric rain rate over a range of wind and rain conditions. These results demonstrate that the satellite scatterometer responds to rain in a manner similar to that of meteorological radars, with a Z–R relationship. These observations and results indicate that the combined (wind and rain) normalized radar cross section will lead to erroneously large wind estimates when the rain-related radar cross section exceeds a particular level that depends on the rain rate and surface wind speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.