Abstract

This effort continues a study of the effects of rain, over the oceans, on the signal retrieved by the SeaWinds scatterometer. It is determined that the backscatter radar cross section can be used to estimate the volumetric rain rate, averaged horizontally, across the surface resolution cells of the scatterometer. The dual polarization of the radar has a key role in developing this capability. The relative magnitudes of the radar backscatter depends on the volumetric rain rate, the rain column height and surface wind velocity, the viewing angle, as well as the polarization (due to the oblateness of raindrops at the higher rain rates). The approach to calibrating the SeaWinds normalized radar cross section (NRCS) is to collect National Weather Service Next Generation Weather Radar (NEXRAD) radar-derived rain rate measurements (4-km spatial resolution and 6-min rotating cycles) colocated in space (offshore) and time with scatterometer observations. These calibration functions lead to a Z-R relationship, which is then used at mid-ocean locations to estimate the rain rate in 0.25/spl deg/ or larger resolution cells, which are compared with Tropical Rainfall Mapping Mission (TRMM) Microwave Imager (TMI) rain estimates. Experimental results to date are in general agreement with simplified theoretical models of backscatter from rain, for this frequency, 14 GHz. These comparisons show very good agreement on a cell-by-cell basis with the TMI estimates for both wide areas (1000 km) and smaller area rain events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.