Abstract
Microbial contamination is a persistent problem for grain industry. Many studies have shown that radio frequency (RF) heating can effectively reduce pathogens populations in low moisture foods, but there is a lack on the efficacy to decontaminate natural microbiome. The main objectives of this study were to investigate the effects of different RF heating conditions on natural microbial populations and physicochemical properties of buckwheat. In this study, 30 buckwheat samples collected from 10 different Provinces in China were analyzed for their microbial loads, and the samples with the highest microbial populations were used for further study to select the suitable RF heating conditions. The results showed that microbial loads in tested buckwheat kernels were in the range of 3.4–6.2 log CFU/g. Samples from Shanxi (SX-3) had significantly higher microbial counts than other samples. The selected four temperature-time combinations: 75 °C-20 min, 80 °C-10 min, 85 °C-5 min, and 90 °C-0 min of RF heating could reduce microbial counts to <3.0 log CFU/g in buckwheat kernels at 16.5% w.b. moisture content. Furthermore, the reduction populations of the inoculated pathogens (Salmonella Typhimurium, Escherichia coli, Cronobacter sakazakii, and Bacillus cereus) reached 4.0 log CFU/g under the above conditions, and almost 5.0 log CFU/g especially at high temperature-short holding time combinations (85 °C-5 min and 90 °C-0 min). Besides, physicochemical properties evaluation also showed the insignificant color changes and nutrients loss after RF treatment at 90 °C-0 min. Therefore, the RF heating at 90 °C-0 min holds greater potential than the other lower temperature-longer holding time combinations for applications in buckwheat pasteurization.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have