Abstract

By internal friction technique,the behaviors of quenched-in vacancies and their influence on the reverse martensitic phase transformation (MT) temperature of the Cu-11.9Al-2.5Mn (wt%) shape memory alloy have been studied. Investigations on the specimens subjected to various cooling regimes indicate that rapid cooling rate leads to relatively high reverse MT temperature. For the water-quenched specimens,the reverse MT temperature bears a non-monotonic relationship to quenching temperature. This phenomenon may be related to the different formation energies of vacancies in ordered and disordered phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call