Abstract

The effects of pulsed electric field (PEF) treatment and processing factors on the inactivation kinetics of Listeria innocua NCTC 11289 were investigated by using a pilot plant PEF unit with a flow rate of 200 liters/h. The electric field strength, pulse length, number of pulses, and inlet temperature were the most significant process factors influencing the inactivation kinetics. Product factors (pH and conductivity) also influenced the inactivation kinetics. In phosphate buffer at pH 4.0 and 0.5 S/m at 40 degrees C, a 3. 0-V/microm PEF treatment at an inlet temperature of 40 degrees C resulted in > or = 6.3 log inactivation of strain NCTC 11289 at 49.5 degrees C. A synergistic effect between temperature and PEF inactivation was also observed. The inactivation obtained with PEF was compared to the inactivation obtained with heat. We found that heat inactivation was less effective than PEF inactivation under similar time and temperature conditions. L. innocua cells which were incubated for a prolonged time in the stationary phase were more resistant to the PEF treatment, indicating that the physiological state of the microorganism plays a role in inactivation by PEF. Sublethal injury of cells was observed after PEF treatment, and the injury was more severe when the level of treatment was increased. Overall, our results indicate that it may be possible to use PEF in future applications in order to produce safe products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.