Abstract
To achieve rapid and simultaneous detection of NoV GI, NoV GII, and HAV, a quadruple real-time fluorescence quantitative PCR (RT-qPCR) assay was developed using MS2 bacteriophage as a process control virus. The quadruple RT-qPCR assay effectively detected NoV GI, NoV GII, HAV, and MS2 RNA with detection limits of 102 copies/μL, 103 copies/μL, 102 copies/μL, and 103 copies/μL, respectively, within 1 hour 50 minutes. The quadruple RT-qPCR assay could specifically detect NoV GI, NoV GII, HAV, and MS2 without cross-reactions with other common pathogens, demonstrating good reproducibility with intra-assay and inter-assay coefficients of variation all below 2.11%. In this study, 337 bivalve shellfish samples collected from various regions of Hebei Province were pretreated using the proteinase K-PEG 8000 precipitation-chloroform method, and viral nucleic acids were enriched and extracted from a volume of viral solution that was doubled. The developed quadruple RT-qPCR assay was used to detect NoV GI, NoV GII, and HAV in bivalve shellfish samples, and the positive rates were 19.88% (67/337), 20.47% (69/337), and 4.75% (16/337), respectively. In addition, mixed infections of NoV GI and NoV GII (10.68%, 36/337) and NoV GI and HAV (0.89%, 3/337) were observed. In all, 200 bivalve shellfish samples were randomly selected for the assay, and it was found that the total, positive, negative coincidence rates, and Kappa values of the quadruple RT-qPCR assay were 98.3%, 99.1%, 98.2%, and 0.945, respectively, compared with the single RT-qPCR assay. These results show that the developed quadruple RT-qPCR assay has comparable performance to the single RT-qPCR assay.IMPORTANCEFood-borne diseases caused by viral contamination have become a growing concern, and bivalve shellfish is a crucial source of infection, with many outbreaks of non-bacterial acute gastroenteritis associated with raw food or the use of undercooked shellfish such as oysters. As food contamination problems caused by NoV and HAV become more severe, it is important to study and establish a sensitive and efficient assay to simultaneously detect NoV and HAV by applying the MS2 process control virus for the protection of bivalve shellfish food safety and the monitoring of the above food-borne viral contamination. In addition, bivalve shellfish samples contain a large number of PCR inhibitors such as polysaccharides, lipids, and proteins, so optimization of the virus enrichment and extraction method is essential and is expected to provide a research basis for subsequent related experiments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.