Abstract

In the current study, we tested a possible mechanism of low- and high-contrast image component discrimination by the vertebrate eye-brain system. Apparently the eye-brain system has to discriminate between the low-contrast image component formed by light scattered within the retina, due to interaction of photons with cells and their parts, and the high-contrast image component transmitted by excitons via the quantum mechanism. Presently, effects of pulsed electric fields applied to Müller cell (MC) intermediate filaments (IFs) on the efficiency of exciton propagation were explored. The effects of both pulse duration and amplitude were recorded. These experimental results show that the eye-brain system may be using signal modulation to discriminate between high- and low-contrast image components, improving our understanding of high-contrast vision in vertebrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.