Abstract

The effect of protein deprivation on rapid Golgi impregnated pyramidal neurons in layers II/III and V of the rat visual cortex was studied at 30, 90, and 220 days of age using morphometric methods. In order to mimic human under-nutrition female rats were adapted to either an 8% or control 25% casein diet 5 weeks prior to conception and maintained on these diets during gestation and lactation. The pups were then weaned and maintained on their respective diets. The undernourished rats showed a significant decrease in brain weight only at 90 days, indicating that the protein deprivation had a mild effect on brain development. Correspondingly, the number of significant histological differences between the two diet groups were least at 30 and 220 days of age. The effect of the diet was greater on layer V than on layer II/III pyramids. At 30 days of age the effect of the diet was different on the pyramids of these two cell layers, at 90 days there was a mixture of similar and dissimilar effects, and at 220 days the pyramids of these two cell layers showed only minor differences between the two diet groups. Analysis of age-related changes indicated that the effect of the diet was different on layer II/III pyramids compared to layer V pyramidal cells. These different effects apparently accounted for the progression from a dissimilar effect of the diet at 30 days on the pyramids of the two cell layers to only minor differences between them at 220 days. Further analysis of these age-related changes shows that two prominent effects of protein deprivation are for age-related changes to occur in undernourished rats but not in controls and for age-related changes to be out-of-phase with each other in the two diet groups. From these findings, and a review of similar studies in the literature, we propose that these mechanisms are a prominent effect of undernutrition in the post-weaning period and help account for the unexpected increases in morphometric measurements noted in undernourished rats in this and other studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.