Abstract

Both cholera enterotoxin and certain prostaglandins have been shown to stimulate intestinal fluid secretion in vivo, to cause ion flux changes in vitro similar to those caused by addition of cyclic 3',5'-adenosine monophosphate (cyclic AMP), and to activate intestinal mucosal adenyl cyclase. It has been suggested that the effects of the enterotoxin on intestinal cyclic AMP metabolism may be indirect, and that locally synthesized prostaglandins may serve as required intermediates for the effects of the enterotoxin in activating intestinal mucosal adenyl cyclase. In order to clarify certain aspects of the mechanisms by which these two agents alter intestinal mucosal cyclic AMP metabolism and ion transport, their effects on cyclic AMP accumulation in rabbit ileal mucosa were examined in vitro. Addition of 5 mug per ml (75 mug per 150 mg mucosa) of purified cholera enterotoxin produced a peak increase in cyclic AMP level in 3 h but there was a time delay of at least 30 min before any effect was observed. Inhibition of cyclic nucleotide phosphodiesterase with theophylline failed to reduce this time delay. In contrast, addition of prostaglandin E(1) (PGE(1)) increased the cyclic AMP level rapidly, a peak effect being observed in 2 min. The time of the peak prostaglandin-induced changes in cyclic AMP level and short-circuit current correlated closely. A maximal increment in cyclic AMP level was achieved with 5 x 10(-5) M PGE(1). When 10(-4) M PGE(1) was added to mucosa already maximally stimulated with cholera toxin, the resulting cyclic AMP level was equal to the sum of the levels reached when each agent was added alone. Furthermore, the effects of the enterotoxin on mucosal cyclic AMP levels were not influenced by indomethacin under conditions where mucosal prostaglandins synthesis was inhibited. The results suggest that endogenous prostaglandins do not provide an essential link in the activation of intestinal mucosal adenyl cyclase by cholera enterotoxin. The present study also indicates that the effect of cholera enterotoxin on intestinal mucosal cyclic AMP metabolism involves a definite time delay which is not due to cyclic nucleotide phosphodiesterase activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.