Abstract

In this study, we prepared the double-layered photocatalytic mortar, where the top-layer has the minimum thickness of 2 mm. We investigated systematically the effects of various process variables (initial NOX concentration, TiO2 addition amount, UV-A radiation, gas flow rate and relative humidity) on photocatalytic conversion of NOX and also the transient NOX conversions for changing ambient conditions of process variables with time. The higher the nano-TiO2 concentration in the mortar or UV-A radiation intensity is, or the lower the NOX gas flow rate or relative humidity is, the higher the NOX conversion efficiency is. As the initial concentration of NOX increases, NOX conversion efficiency decreases, but the amount of NOX conversion increases. It is confirmed that the prepared photocatalytic mortar could convert NOX in the air efficiently for various conditions of process variables. NOX conversion efficiencies in transient environmental conditions were equivalent to those in fixed conditions for the same process variables. This study provides strong basic data to apply the photocatalytic mortar to convert NOX efficiently using solar energy without the use of extra energy and can be easily extended to future applications to infrastructures such as buildings, tunnels, or roads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.