Abstract

Two-dimensional, carbon-fiber-reinforced aluminum matrix composites (2D-C f/Al composites) were prepared using liquid–solid extrusion by following the vacuum infiltration technique (LSEVI), which was an integrated and comprehensive process that resulted in as composite special-shaped part with ideal infiltration and a satisfied forming effect. According to the current research, we found preheating temperature, squeeze temperature, squeeze pressure, and melting temperature were the key parameters of the LSEVI technique, and it was very important to optimize these process parameters to obtain the ideal composite part. Through the research of orthogonal experimental design of these process parameters, results showed that squeeze pressure was the most significant influence parameter, and optimized parameters of aforementioned parameters were 888 K, 893 K, and 1053 K (615 °C, 620 °C, and 780 °C), 70 MPa, respectively. An infiltration effect of the C f/Al composite was full and uniform, and preparation defects could be avoided effectively under the above process parameters. Two-dimensional (2D) T300 carbon fiber preform was prepared by the method of carbon fiber laminates, and the 2D-C f/Al composite special-shaped part was fabricated successfully using the former optimized parameters of LSEVI. Results indicated a forming effect of the special-shaped part was obtained and that its sizes were reasonable. Through the analyses of microstructure and tensile property test, its infiltration effect and fracture morphology were satisfied. Carbon fibers in the composite played the reinforced effect effectively, so the ultimate tensile strength of the composite part was improved by 115.8 pct than that of the matrix, which proved that the optimized process parameters of the LSEVI technique were reasonable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call