Abstract

BackgroundProne position during general anesthesia for special surgical operations may be related with increased airway pressure, decreased pulmonary and thoracic compliance that may be explained by restriction of chest expansion and compression of abdomen. The optimum ventilation mode for anesthetized patients on prone position was not described and studies comparing volume-controlled ventilation (VCV) and pressure-controlled ventilation (PCV) during prone position are limited. We hypothesized that PCV instead of VCV during prone position could achieve lower airway pressures and reduce the systemic stress response. In this study, we aimed to compare the effects of PCV and VCV modes during prone position on respiratory mechanics, oxygenation, and hemodynamics, as well as blood cortisol and insulin levels, which has not been investigated before.MethodsFifty-four ASA I-II patients, 18–70 years of age, who underwent percutaneous nephrolithotomy on prone position, were randomly selected to receive either the PCV (Group PC, n = 27) or VCV (Group VC, n = 27) under general anesthesia with sevoflurane and fentanyl. Blood sampling was made for baseline arterial blood gases (ABG), cortisol, insulin, and glucose levels. After anesthesia induction and endotracheal intubation, patients in Group PC were given pressure support to form 8 mL/kg tidal volume and patients in Group VC was maintained at 8 mL/kg tidal volume calculated using predicted body weight. All patients were maintained with 5 cmH2O PEEP. Respiratory parameters were recorded during supine and prone position. Assessment of ABG and sampling for cortisol, insulin and glucose levels were repeated during surgery and 60 min after extubation.ResultsP-peak and P-plateau levels during supine and prone positions were significantly higher and P-mean and compliance levels during prone position were significantly lower in Group VC when compared with Group PC. Postoperative PaO2 level was significantly higher in Group PC compared with Group VC. Cortisol levels were increased with surgery in both groups (p < 0.05) and decreased to baseline levels in Group PC while remained high in Group VC in the early postoperative period. Cortisol levels were significantly higher in Group VC during surgery and in the early postoperative period compared with Group PC.ConclusionWhen compared with VCV mode, PCV mode is associated with lower P-peak and P-plateau levels during both supine and prone positions, better oxygenation postoperatively, lower blood cortisol levels during surgery in prone position and in the early postoperative period. We concluded that PCV mode might be more appropriate in prone position during anesthesia.

Highlights

  • Prone position during general anesthesia for special surgical operations may be related with increased airway pressure, decreased pulmonary and thoracic compliance that may be explained by restriction of chest expansion and compression of abdomen (Tanskanen et al 1997; Palmon et al 1998)

  • Major findings of the present study are pressure-controlled ventilation (PCV) mode was associated with lower P-peak and P-plateau levels during both supine and prone positions, and higher P-mean levels during prone positions when compared with volume-controlled ventilation (VCV) mode

  • In our previous study (Sen et al 2016), we have demonstrated that, when compared with VCV, PCV mode was associated with lower P-peak levels before and during pneumoperitoneum, better oxygenation and reduced systemic stress response postoperatively in patients having laparoscopic cholecystectomy

Read more

Summary

Introduction

Prone position during general anesthesia for special surgical operations may be related with increased airway pressure, decreased pulmonary and thoracic compliance that may be explained by restriction of chest expansion and compression of abdomen. The optimum ventilation mode for anesthetized patients on prone position was not described and studies comparing volume-controlled ventilation (VCV) and pressure-controlled ventilation (PCV) during prone position are limited. Volume-controlled ventilation (VCV) that utilizes a constant flow to deliver a target tidal volume ensures minute ventilation, but reduced thoracic or lung compliance, increased airway resistance or active asynchronous exhalation of the patient may result in high airway pressures and increase the risk of ventilator-induced lung injury (Campbell and Davis 2002). Prone position during general anesthesia for special surgical operations may be related with increased airway pressure, decreased pulmonary and thoracic compliance that may be explained by restriction of chest expansion and compression of abdomen (Tanskanen et al 1997; Palmon et al 1998). We aimed to compare the effects of PCV and VCV modes during prone position on respiratory mechanics, oxygenation, and hemodynamics, as well as blood cortisol and insulin levels, which has not been investigated before

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call