Abstract
The analytical solutions are obtained for the Graetz problem with pressure work and viscous dissipation in the thermal entrance region of the parallel-plate channels for two basic boundary conditions of uniform wall temperature and uniform wall heat flux involving fully developed laminar gas flows. The asymptotic Nusselt number is found to be zero instead of the conventionally accepted value of 7.54 for the uniform wall temperature case and (140/17)/ [1+(27/17) PrEc] for uniform wall heat flux case. The effects of pressure work and viscous dissipation contribute significantly to the asymptotic results for heat transfer and cannot be neglected under any circumstances in the case of uniform wall temperature. Sample results are presented to illustrate the effects of pressure work and viscous dissipation on heat transfer characteristics in the thermal entrance region.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have