Abstract

Experimental investigations were carried out to evaluate the effect of continuous and delayed exposure of power frequency electromagnetic fields at 5, 50 and 100 μT on germinating Vicia faba seedlings as a model system. These studies included physical parameters (length and girth of primary roots, number as well as length of lateral roots and imbibition), major biochemical constituents (total sugar, protein, and fat) and activities of important housekeeping enzymes (amylases, proteases, and lipase) at 2, 4, and 8 days of growth. Also, mitotic index and rate of DNA synthesis were studied at day 8 of growth. There was no significant change in physical parameters and major biochemical constituents between control and experimental groups. Also, the comparison between the control and experimental group of seeds showed that α-amylase activity significantly decreased at 5, 50 and 100 μT on day 2 and 4 of growth. β-amylase and protease (37○C & 50○C) showed a significant decrease in activity on day 2 and 4 of growth at 100 μT, whereas activity of lipase significantly decreased only on day 2 of growth at 100 μT. At day 8 of growth, all enzyme activities reverted back to the same as control. Also, there was a significant increase in mitotic index as well as 3H-thymidine uptake at 100 μT delayed exposure on day 8. The present study suggests that exposure to power frequency electromagnetic fields up to 100 μT on germinating seedlings does not cause any permanent damage since the initial alteration under the magnetic fields in some important housekeeping enzymes involved in the onset of seed germination were returened to control values on day 8 of growth. Also, the growth of the germinated seedlings was found to be enhanced by the application of power frequency magnetic fields (100 μT) as evidenced by mitotic index and 3H-thymidine uptake.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.