Abstract

Abstract—Inulin, sucrose and chloride spaces were measured in slices of brain cortex from adult and from new‐born rats incubated in‘balanced', potassium‐rich and sodium‐rich media. The efflux of the radioactive markers was followed in the two first media and the following results were obtained:(1) In brain slices from new‐born rats inulin and sucrose spaces were of identical magnitude (35 per cent). The space magnitude was essentially unaffected by excess potassium. The chloride space was somewhat larger than the inulin (sucrose) space, and the difference increased continuously but relatively slightly with the external potassium concentration. By far the largest amount (i.e. about 90 per cent) of the efflux of radioactive inulin, sucrose and chloride occurred from a rapidly exchanging compartment during incubation in both ‘balanced’ and potassium‐rich media.(2) In brain slices from adult rats the inulin space (35 per cent) was significantly smaller than that of sucrose (50 per cent) and of chloride (65 per cent); it seemed to represent the extracellular space relatively well although 10 per cent of the efflux occurred from a slowly exchanging (probably intracellular) compartment. High concentrations of potassium led to a reduction of the inulin space which was probably a result of the concomitant intracellular swelling. The hyperosmolarity per se did not affect the space magnitude, but an increase of the sodium concentration exerted a competitive inhibition of potassium effects on the inulin space. Of the sucrose efflux, 20 per cent occurred from a slowly exchanging compartment in both ‘balanced’ and potassium‐rich media, and 30 per cent of the chloride exchanged with this compartment when the tissue was incubated in a ‘balanced’ medium. An increase of the external potassium concentration caused a drastic increase of the chloride space and a reduction of the slowly exhanging fraction of chloride efflux to less than 10 per cent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.