Abstract

Weathering and operational conditions, as known, have significant impact on typical constituent materials which are used for many construction applications. Among others, structural glass solutions can suffer for these effects in terms of major modification of material properties of interlayers, bonds, connections, gaskets and polymeric components in general. In this paper, the attention is given to the effects of repeated low-amplitude impacts and short-term temperature gradients for the characterization of load-bearing capacity in monolithic glass elements retrofitted by safety films. Especially for existing glass systems which are made of monolithic glass with limited strength and resistance capacity against ordinary and accidental mechanical loads, safety films are commercially available for retrofit interventions. They are primarily expected to keep together glass fragments in case of breakage, and thus minimize possible injuries. Besides, after first fracture, the so obtained glass-film composite elements have uncertain residual mechanical capacity against ordinary loads, given that it mostly depends on thin films composed of Polyethylene terephthalate (PET)-layers and pressure sensitive adhesives (PSAs). To this aim, a set of experiments (for a total of 950 configurations) is carried out in laboratory conditions (30 °C) on small-scale samples of fractured annealed monolithic glass elements bonded by commercial safety films, under repeated low-amplitude impacts / vibrations (S1-TR series), or additionally subjected to preliminary short-term thermal gradients (S2-TC1 series cooled at +5 °C and S3-TC2 series at −20 °C). Localized impacts are quantified in acceleration peaks in the range of 2 ÷ 14 m/s2 and rotations at supports in the order of 15 ÷ 20°. The interpretation of dynamic experimental results is carried out in terms of post-fracture vibration frequency (based on classical operational modal analysis techniques) and used, with the support of simplified analytical models or Finite Element (FE) numerical simulations, to characterize the response of cracked glass-film samples. Most importantly, the vibration frequency decrease is used to quantify their residual load-bearing capacity under unfavourable conditions, and to quantify the post-critical benefit of thin bonding safety films under unfavourable conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call