Abstract
For most fires occurring in buildings with a concrete structural frame, the structural elements do not collapse during fire exposure, and further use of the building after fire may be possible. Fire can nevertheless result in a permanent loss of strength and thus a post-fire evaluation of the residual load bearing capacity has to be made to inform decisions on continued use and the need for structural repairs. This evaluation is however particularly difficult due to the many uncertainties associated with both the fire exposure and the characteristics of the structural elements. These uncertainties cannot be neglected when determining the residual capacity since adequate safety is a major societal concern as indicated by the predominance of safety in current design standards and guidance documents. In this paper a comprehensive methodology is presented for the assessment of the residual capacity of concrete structures after exposure to fire. The methodology is introduced through application to a real-life case study of an apartment fire with a focus on the end-span of the affected continuous concrete slab. It results in a reliability-based evaluation of the maximum allowable characteristic value for the imposed load on the slab. The presented methodology is useful to make informed decision about continued use of structures after a fire event.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.