Abstract

Architected materials are increasingly applied in form of lattice structures to biomedical implant design for the purpose of optimizing the implant’s biomechanical properties. Since the porous design of the lattice structures affects the resulting properties of the implant, its parameters are being investigated by numerous research articles. The design-related parameters of the unit cells for a strut-architected material are mainly the pore size and the strut thickness. Until today, researchers have not been able to decide on the perfect values of the unit cell parameters for the osseointegration process and tissue regeneration. Based on in vivo and in vitro experiments conducted in the field, researchers have suggested a range of values for the parameters of the lattice structures where osseointegration is in acceptable status. The present study presents a comprehensive review of the research carried out until today, experimenting and proposing the optimum unit cell parameters to generate the most suitable lattice structure for the osseointegration procedure presented in orthopedic applications. Additional recommendations, research gaps, and instructions to improve the selection process of the unit cell parameters are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call