Abstract

The lattice structure is a type of cellular materials [1] that has truss-like structures with interconnected struts and nodes in a three-dimensional (3D) space. Compared to other cellular materials such as random foams and honeycombs, the lattice structures exhibit better mechanical performance [2]. Some examples of lattice structures are shown in Figure 8.1. The first one is a randomized lattice structure. Due to the disordered lattice cells, the properties of this type of lattice structures are stochastic and difficult to control. But it can be used as implants in orthopedic surgeries. The second and the third are lattice structures with periodic unit cells. The difference is that the strut thickness of the second one is uniform, which is called homogeneous lattice structures. However, the third one has non-uniform strut thickness for specific loading conditions, which is called heterogeneous lattice structures. By properly adjusting the material in vital parts of the lattice structure, the heterogeneous periodic lattice structure can have a better mechanical performance than the homogeneous one with the same weight. Plenty of design and optimization methods [3-5] have been proposed for lattice structures to pursue better performance in different engineering applications. For example, the lattice structure is applied to achieve lightweight [3, 4], energy absorption [6], and thermal management [7]. Due to the complexity of the geometry, the fabrication of lattice structures had been the most critical issue. However, with the development of Additive Manufacturing (AM) processes, the difficulty in the fabrication was largely relieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call