Abstract

The purpose of this study was to improve the mechanical property of brittle carbonate apatite (CO3Ap) foam aimed as bone substitute material by reinforcement with poly(DL-lactide-co-glycolide) (PLGA). The CO3Ap foam was reinforced with PLGA by immersion and vacuum infiltration methods. Compressive strength of CO3Ap foam (12.0±4.9 kPa) increased after PLGA reinforcement by immersion (187.6±57.6 kPa) or vacuum infiltration (407.0±111.4 kPa). Scanning electron microscopic (SEM) observation showed a gapless PLGA and CO3Ap foam interface and larger amount of PLGA inside the hollow space of the strut when vacuum infiltration method was employed. In contrast a gap was observed at the PLGA and CO3Ap foam interface and less amount of PLGA inside the hollow space of the strut when immersion method was employed. Strong PLGA-CO3Ap foam interface and larger amount of PLGA inside the hollow space of the strut is therefore the key to higher mechanical property obtained for CO3Ap foam when vacuum infiltration was employed for PLGA reinforcement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.