Abstract

Carbonate apatite (CO3Ap) foam with interconnecting porous structure is a potential candidate as bone substitute material owing to its similarity to the cancellous bone with respect to composition, morphology and osteoclastic degradation. However, it is brittle and difficult to handle. This is thought to be caused by no organic material in the CO3Ap foam. The aim of this study is to reinforce the CO3Ap foam with poly (DL-lactide-co-glycolide) (PLGA). Immersion and vacuum infiltration methods were compared as reinforcing methods. Compressive strength of unreinforced CO3Ap foam, (12.0 ± 4.9 kPa) increased after PLGA reinforcement by immersion (187.6 ± 57.6 kPa) or by vacuum infiltration (407 ± 111.4 kPa). Scanning electron microscopy (SEM) showed the preservation of full interconnecting porous structure of CO3Ap foam after PLGA reinforcement using immersion or vacuum infiltration. Interface between the PLGA and CO3Ap foam, however revealed that no gap was found between the PLGA and CO3Ap foam interface when vacuum was used to reinforce the PLGA whereas a gap was found when simple immersion was used. Strong interface between PLGA and CO3Ap foam is therefore thought to be the key for higher compressive strength. In conclusion, vacuum infiltration is a more efficient method to reinforce the CO3Ap foam with PLGA for improving the mechanical strength without sacrificing the cancellous bone-type morphology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.