Abstract

BackgroundDoppler velocimetry studies of umbilical artery (UA) and middle cerebral artery (MCA) flow help to determine the presence and severity of fetal growth restriction. Increased UA resistance and reduced MCA pulsatility may indicate increased placental resistance and intrafetal blood flow redistribution. Malaria causes low birth weight and fetal growth restriction, but few studies have assessed its effects on uteroplacental and fetoplacental blood flow.MethodsColour-pulsed Doppler ultrasound was used to assess UA and MCA flow in 396 Papua New Guinean singleton fetuses. Abnormal flow was defined as an UA resistance index above the 90th centile, and/or a MCA pulsatility index and cerebroplacental ratio (ratio of MCA and UA pulsatility index) below the 10th centile of population-specific models fitted to the data. Associations between malaria (peripheral infection prior to and at ultrasound examination, and any gestational infection, i.e., ‘exposure’) and abnormal flow, and between abnormal flow and birth outcomes, were estimated.ResultsOf 78 malaria infection episodes detected before or at the ultrasound visit, 62 (79.5%) were Plasmodium falciparum (34 sub-microscopic infections), and 16 were Plasmodium vivax. Plasmodium falciparum infection before or at Doppler measurement was associated with increased UA resistance (adjusted odds ratio (aOR) 2.3 95% CI 1.0–5.2, P = 0.047). When assessed by ‘exposure’, P. falciparum infection was significantly associated with increased UA resistance (all infections: 2.4, 1.1–4.9, P = 0.024; sub-microscopic infections 2.6, 1.0–6.6, P = 0.051) and a reduced MCA pulsatility index (all infections: 2.6, 1.2–5.3, P = 0.012; sub-microscopic infections: 2.8, 1.1–7.5, P = 0.035). Sub-microscopic P. falciparum infections were additionally associated with a reduced cerebroplacental ratio (3.64, 1.22–10.88, P = 0.021). There were too few P. vivax infections to draw robust conclusions. An increased UA resistance index was associated with histological evidence of placental malaria (5.1, 2.3–10.9, P < 0.001; sensitivity 0.26, specificity 0.93). A low cerebroplacental Doppler ratio was associated with concurrently measuring small-for-gestational-age, and with low birth weight.Discussion/conclusionBoth microscopic and sub-microscopic P. falciparum infections impair fetoplacental and intrafetal flow, at least temporarily. Increased UA resistance has high specificity but low sensitivity for the detection of placental infection. These findings suggest that interventions to protect the fetus should clear and prevent both microscopic and sub-microscopic malarial infections.Trial Registration ClinicalTrials.gov NCT01136850. Registered 06 April 2010

Highlights

  • Doppler velocimetry studies of umbilical artery (UA) and middle cerebral artery (MCA) flow help to determine the presence and severity of fetal growth restriction

  • This study evaluated the impact of P. falciparum and P. vivax infection as well as other potential preventable and treatable risk factors for low birth weight (LBW) and fetal growth restriction (FGR), such as undernutrition and anaemia, on fetoplacental (UA) and MCA Doppler flow indices and fetal size in a cohort of pregnant women co-enrolled in a large malaria prevention study in Papua New Guinea (PNG)

  • Study setting and population The study cohort consisted of women who participated in both a randomized controlled trial investigating the impact of intermittent preventive treatment (IPTp) with azithromycin (AZ) plus sulfadoxine–pyrimethamine (SP) on birth weight [23] and a nested ultrasound study evaluating factors associated with reduced fetal size and fetal weight gain in PNG [25]

Read more

Summary

Introduction

Doppler velocimetry studies of umbilical artery (UA) and middle cerebral artery (MCA) flow help to determine the presence and severity of fetal growth restriction. Increased UA resistance and reduced MCA pulsatility may indicate increased placental resistance and intrafetal blood flow redistribution. Malaria causes low birth weight and fetal growth restriction, but few studies have assessed its effects on uteroplacental and fetoplacental blood flow. A decrease in middle cerebral artery pulsatility index (MCAPI) in third trimester indicates blood flow redistribution to the fetal brain as a physiological adaptation to placental insufficiency [11]. This is an adaptive response to maintain brain growth at the expense of other body parts when oxygen and nutrient supply is limited, resulting in asymmetrical growth restriction [12]. UA and MCA interrogations predict adverse outcomes best amongst pregnancies measuring small-for-gestational-age [(SGA),

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call