Abstract

Quasi-static structural finite-element models of an aluminum-framed crystalline silicon photovoltaic module and a glass-glass thin-film module were constructed and validated against experimental measurements of deflection under uniform pressure loading. Specific practices in the computational representation of module assembly were identified as influential to matching experimental deflection observations. Additionally, parametric analyses using Latin hypercube sampling were performed to propagate input uncertainties related to module materials, dimensions, and tolerances into uncertainties in simulated deflection. Sensitivity analyses were performed on the uncertainty quantification datasets using linear correlation coefficients and variance-based sensitivity indices to elucidate key parameters influencing module deformation. Results identified edge tape and adhesive material properties as being strongly correlated to module deflection, suggesting that optimization of these materials could yield module stiffness gains at par with the conventionally structural parameters, such as glass thickness. This exercise verifies the applicability of finite-element models for accurately predicting mechanical behavior of solar modules and demonstrates a workflow for model-based parametric uncertainty quantification and sensitivity analysis. Applications of this capability include the assessment of field environment loads, derivation of representative loading conditions for reduced-scale testing, and module design optimization, among others.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.