Abstract

Efforts have been made to improve the biological stability of phosphodiester (PO) oligonucleotides by the addition of various modifications to either the 3', 5' or both the 3' and 5' ends of an oligonucleotide. ISIS 1080, a phosphorothioate (PS) 21-mer oligonucleotide complementary to the internal AUG codon of UL13 mRNA in HSV-1, reduces the infectious yield of HSV-1 in HeLa cells to 9.0% +/- 11%. PO analogs of ISIS 1080 containing three PS linkages placed on the 3' (ISIS 1365), 5' (ISIS 1370), both the 3' and 5' (ISIS 1364) ends or with four linkages in the middle (ISIS 1400) demonstrated reduced antiviral efficacy compared to fully PS ISIS 1080. Thermal denaturation profiles demonstrated that these oligonucleotides hybridized to complementary DNA or RNA with equivalent binding affinities. All were able to support E. coli RNAse H cleavage of the HSV mRNA to which they were targeted. The stability of the congeners in cell culture medium containing 10% fetal calf serum (FCS), HeLa cytosolic extract, HeLa nuclear extract and in intact HeLa cells revealed that ISIS 1080 was most resistant to nucleolytic digestion through 48 hours. Partial PS oligonucleotides exhibited increased degradation compared to the fully thioated oligonucleotide by exonuclease activity in FCS and endonuclease activity in cell extracts or intact cells. Thus, the reduced efficacy of partial compared to fully PS oligonucleotides against HSV-1 in HeLa cells may result from increased degradation of the mixed PO/PS oligonucleotides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call