Abstract

Diphosphoinositol pentakisphosphate (InsP7) and bis-diphosphoinositol tetrakisphosphate contain pyrophosphate bonds. InsP7 is formed from inositol hexakisphosphate (InsP6) by a family of three inositol hexakisphosphate kinases (InsP6K). In this study we establish one of the InsP6Ks, InsP6K2, as a physiologic mediator of cell death. Overexpression of wild-type InsP6K2 augments the cytotoxic actions of multiple cell stressors in diverse cell lines, whereas transfection with a dominant negative InsP6K2 decreases cell death. During cell death, InsP6 kinase activity is enhanced, and intracellular InsP7 level is augmented. Deletion of InsP6K2 but not the other forms of InsP6K diminishes cell death, suggesting that InsP6K2 is the major InsP6 kinase involved in cell death. Cytotoxicity is associated with a translocation of InsP6K2 from nuclei to mitochondria, whereas the intracellular localization of the other isoforms of the enzyme does not change. The present study provides compelling evidence that endogenous InsP6K2, by generating InsP7, provides physiologic regulation of the apoptotic process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.