Abstract

Triplet state dissolved organic matter (3DOM*) plays a significant role in inducing oxidant decay and radical generation in light-based advanced oxidation processes. However, the effects of pH still need investigation. This work quantitatively analyzed the pH-dependent free available chlorine (FAC) decay and radical formation (i.e., HO• and Cl•) induced by 3DOM* or triplet state photosensitizer (3PS*). Upon UV irradiation at 254 nm, the decay rate of FAC by 3DOM* or 3PS* was the highest at neutral pH, while those by dark reaction of DOM and the direct photolysis of FAC were the highest at acidic conditions. This is attributed to the variation of FAC species, 3DOM* or 3PS* formation, and the reaction rate constants of FAC with 3DOM* or 3PS* at pH 5.0–10.0. 3DOM* and 3PS* formed increasingly with pH varying from 5.0 to 10.0, while their reactivity with FAC decreased due to the speciation from HOCl to OCl–. Radical formation (i.e., HO• and Cl•) from FAC reaction with 3DOM* or 3PS* occurred at all the testing pH range (5.0–10.0). This work highlighted the pH-dependent role of 3DOM* in oxidant decay and radical formation in treating DOM containing waters through oxidant photolysis. Environmental implicationsTriplet state dissolved organic matter (3DOM*) plays a significant role in inducing oxidant decay and radical generation in light-based AOPs. This study revealed the effects of pH in 3DOM* induced free available chlorine (FAC) decay and radical formation (i.e., HO• and Cl•). With DOM at 3 mgC L−1, FAC decayed fastest under neutral conditions and radical formation (i.e., HO• and Cl•) was enhanced at 5.0–10.0 due to 3DOM* reaction with FAC. These results highlighted the pH-dependent role of 3DOM* in oxidant transformation and radical formation in treating DOM containing waters by AOPs based on oxidant photolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call