Abstract
Purpose/Aim: Changes in pH are not infrequently encountered in clinical situations and can be associated with significant effects on ion channels, mitochondria and axon function. The purpose of this paper is to study the modulatory effects of pH on the anoxic response in peripheral nerve. Materials and Methods: A total of 48 rat sciatic nerves were studied in vitro in a perfusion apparatus. Experiments were carried out at 6 pH levels from 6.0 to 7.8. Results: The amplitude of the nerve action potential (NAP) drops more dramatically with repetitive periods of anoxia when the pH is reduced below 6.5. In addition, velocity decreases and duration increases more with each cycle of anoxia at low pH values. Despite these effects of pH on recovery after anoxia, there was no significant effect of pH on the time course of changes during anoxia. During recovery from anoxia, the NAP recovered more slowly when the pH was lowered. Conclusions: The pattern of changes in amplitude, velocity and duration suggest that they may be due to interference of high hydrogen ion concentrations with sodium and potassium channel function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.