Abstract

In this work steady-state absorption spectroscopy, circular dichroism spectroscopy and sub-microsecond time-resolved absorption spectroscopy were used to investigate the effect of pH on the structures and functions of LH2 complex for Rhodopseudomonas palustris. The results revealed that: (1) B800 Bchla was gradually transformed to free pigments absorbing around 760 nm on the minutes timescale upon the induction of strong acidic pH, and subsequently there disappeared the CD signal for Q(y) band of B800 in the absence of B800. In addition, Carotenoids changed with the similar tendency to B850 BChl. (2) The introduction of strong basic pH gave rise to no significant changes for B800 Bchla, while B850 BChla experienced remarkable spectral blue-shift from 852 to 837 nm. Similar phenomenon was seen for the CD signal for Q(y) band of B850. Carotenoids displayed strong and pH-independent CD signals in the visible range. (3) In the case of both physiological and basic pH, broad and asymmetrical positive T( n ) <-- T(1) transient absorption appeared following the pulsed photo-excitation of Car at 532 nm. By contrast, the featureless and weak positive signal was observed on the sub-microsecond timescale in the acidic pH environment. The aforementioned experimental results indicated that acidic pH-induced removal of B800 Bchla prevented the generation of the carotenoid triplet state ((3)Car), which is known to be essential for the photo-protection function. Nevertheless, carotenoids can still perform this important physiological role under the basic pH condition, where the spectral blue shift of B850 exerts little effect on the overall structure of the cyclic aggregate, therefore favoring the formation of carotenoid triplet state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call