Abstract

BackgroundDietary modifications are crucial for managing newly diagnosed type 2 diabetes mellitus (T2DM) and preventing its health complications, but many patients fail to achieve clinical goals with diet alone. We sought to evaluate the clinical effects of a personalized postprandial-targeting (PPT) diet on glycemic control and metabolic health in individuals with newly diagnosed T2DM as compared to the commonly recommended Mediterranean-style (MED) diet.MethodsWe enrolled 23 adults with newly diagnosed T2DM (aged 53.5 ± 8.9 years, 48% males) for a randomized crossover trial of two 2-week-long dietary interventions. Participants were blinded to their assignment to one of the two sequence groups: either PPT-MED or MED-PPT diets. The PPT diet relies on a machine learning algorithm that integrates clinical and microbiome features to predict personal postprandial glucose responses (PPGR). We further evaluated the long-term effects of PPT diet on glycemic control and metabolic health by an additional 6-month PPT intervention (n = 16). Participants were connected to continuous glucose monitoring (CGM) throughout the study and self-recorded dietary intake using a smartphone application.ResultsIn the crossover intervention, the PPT diet lead to significant lower levels of CGM-based measures as compared to the MED diet, including average PPGR (mean difference between diets, − 19.8 ± 16.3 mg/dl × h, p < 0.001), mean glucose (mean difference between diets, − 7.8 ± 5.5 mg/dl, p < 0.001), and daily time of glucose levels > 140 mg/dl (mean difference between diets, − 2.42 ± 1.7 h/day, p < 0.001). Blood fructosamine also decreased significantly more during PPT compared to MED intervention (mean change difference between diets, − 16.4 ± 37 μmol/dl, p < 0.0001). At the end of 6 months, the PPT intervention leads to significant improvements in multiple metabolic health parameters, among them HbA1c (mean ± SD, − 0.39 ± 0.48%, p < 0.001), fasting glucose (− 16.4 ± 24.2 mg/dl, p = 0.02) and triglycerides (− 49 ± 46 mg/dl, p < 0.001). Importantly, 61% of the participants exhibited diabetes remission, as measured by HbA1c < 6.5%. Finally, some clinical improvements were significantly associated with gut microbiome changes per person.ConclusionIn this crossover trial in subjects with newly diagnosed T2DM, a PPT diet improved CGM-based glycemic measures significantly more than a Mediterranean-style MED diet. Additional 6-month PPT intervention further improved glycemic control and metabolic health parameters, supporting the clinical efficacy of this approach.Trial registrationClinicalTrials.gov number, NCT01892956

Highlights

  • Dietary modifications are crucial for managing newly diagnosed type 2 diabetes mellitus (T2DM) and preventing its health complications, but many patients fail to achieve clinical goals with diet alone

  • At the end of 6 months, the postprandial targeting (PPT) intervention leads to significant improvements in multiple metabolic health parameters, among them HbA1c, fasting glucose (− 16.4 ± 24.2 mg/dl, p = 0.02) and triglycerides (− 49 ± 46 mg/dl, p < 0.001)

  • Applying our algorithm for postprandial glucose responses (PPGR) prediction by clinical and gut microbiome features to this subset of T2DM subjects, we found that even in this population, the standard “carbohydrate counting” approach poorly explains the variability in PPGRs (18%), while adding clinical and microbiome features used by our algorithm increases the explained variance substantially (46%) (Fig. 2C, D)

Read more

Summary

Introduction

Dietary modifications are crucial for managing newly diagnosed type 2 diabetes mellitus (T2DM) and preventing its health complications, but many patients fail to achieve clinical goals with diet alone. We sought to evaluate the clinical effects of a personalized postprandial-targeting (PPT) diet on glycemic control and metabolic health in individuals with newly diagnosed T2DM as compared to the commonly recommended Mediterraneanstyle (MED) diet. Type 2 diabetes mellitus (T2DM) is a progressive disease characterized by increased blood glucose levels that lead to serious macro and microvascular complications [1, 2]. The primary goal in T2DM management is to improve glycemic control to reduce the risk for health complications. Blood glycated hemoglobin (HbA1c), which is a marker for a 3-month average of blood glucose levels, is often used to assess glycemic control in diabetes management [5]. Continuous glucose monitoring (CGM) devices have become appreciated as another reliable tool for evaluating glycemic control in research settings and clinical practice [6]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.