Abstract
The effects of exposure of red blood cells (RBC) of three species of marsupial to a mercury-containing sulfhydryl-modifying reagent, p-chloromercuribenzene sulfonate (PCMBS), on the water diffusional permeability ( P (d)) of their membranes were monitored by using an Mn(2+)-doping (1)H nuclear magnetic resonance (NMR) technique at 400 MHz. For koala ( Phascolarctos cinereus), RBC the maximal inhibition was reached at 37 degrees C in 60 min with 1 mmol.l(-1) PCMBS or in 15-30 min with 2 mmol. l(-1) PCMBS. In contrast, in the case of red kangaroo ( Macropus rufus) or swamp wallaby ( Wallabia bicolor) RBC, maximal inhibition required an incubation of 90 min at 37 degrees C with 2 mmol.l(-1) PCMBS. For the RBC of all three species the value of maximal inhibition was very high, being 50-70% when measured at 25 degrees C, 60-80% at 30 degrees C and 60-70% at 37 degrees C. The lowest values of P (d) appeared to be around 2 x 10(-3)-3 x 10(-3) cm.s(-1) in the temperature range of 25-37 degrees C. The mean value of the activation energy of water diffusion ( E (a,d)) was approximately 20-25 kJ.mol(-1) for control and approximately 40 kJ.mol(-1) for PCMBS-inhibited RBCs. These results show that marsupial RBC have a basal permeability to water similar to that previously reported for human RBC, but a higher value of the PCMBS-inhibitable water permeability. This indicates that the higher water permeability of marsupial RBC compared with human RBC is associated with a higher fraction of protein-mediated water permeability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have