Abstract

Rooted cuttings of poplar (Populus nigra) and seedlings of beech (Fagus sylvatica) were exposed to ozone in open-top chambers for one growing season. Three treatments were applied: charcoal-filtered (CF), non-filtered (NF) and non-filtered air plus 30 ppb (nl l−1) ozone (NF+). Extra ozone was only added on clear days, from 09:00 until 17:00–20:00. The AOT40s (accumulated exposure over a threshold of 40 ppb), calculated from April to September were 4055 ppb.h for the NF and 8880 ppb.h for the NF+ treatments. For poplar ozone exposure caused highly significant reductions in growth rate, light-saturated net CO2 assimilation rate, stomatal conductance, Fv/Fm and chlorophyll content. The largest effects were observed in August at which time ozone concentrations were elevated. A reduction was noticed in new leaf production, while accelerated ageing and visible damage to leaves caused high leaf losses. For beech the responses were similar but less pronounced: ozone exposure resulted in non-significant growth reductions, slight changes in light-saturated photosynthesis and accelerated leaf abscission. The chlorophyll content of beech leaves was not affected by the ozone treatments. The results confirmed previous observations that fast-growing tree species, such as most poplar species and hybrids, are more sensitive and responsive to tropospheric ozone than slower-growing species, such as beech. The growth reductions observed and reported here for beech were within the range of those reported in relationship to the AOT40 (accumulated exposure over a threshold of 40 ppb) critical level for ozone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call