Abstract

4-hydroxyl-2-nonenal (HNE) is a lipid oxidation product that can increase oxymyoglobin oxidation. However, limited research has evaluated the role of oxygen partial pressure in HNE-induced metmyoglobin formation. Therefore, the objective of was to compare the effects of atmospheric and high-oxygen partial pressure on HNE-induced oxymyoglobin oxidation in vitro. Oxymyoglobin was incubated with or without HNE at atmospheric (20% O2) or high-oxygen (80% O2) partial pressure. Metmyoglobin formation was measured after 0, 48, and 96 h of incubation at 4°C, and mass spectrometry was utilized to characterize the covalent binding of HNE to myoglobin. High-oxygen condition (80% O2) increased (P < 0.05) HNE-induced oxymyoglobin oxidation compared with the atmospheric partial pressure condition (20% O2). However, HNE was bound to myoglobin at both high-oxygen and atmospheric partial pressure conditions, with no differences (P > 0.05) in the extent of adduct formation. These results suggest that high-oxygen conditions had no effect on extent of HNE-binding, but can increase oxymyoglobin oxidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call