Abstract

The effects of oxygen pick‐up and sintering additives on the formation of silicon carbide (SiC) fibers from polyaluminocarbosilane are studied. It has been found that the strict control of oxygen pick up during the oxidation curing is essential to produce near‐stoichiometric SiC fibers. When the molar ratio of oxygen to excess carbon in the pyrolyzed fibers (SiCxOy) is slightly over 1 (O/CExcess=y/(x−1)>1), the excess carbon is eliminated during the subsequent sintering as CO and CO2 as a result of the decomposition of SiCxOy; the remaining oxygen is removed as SiO and CO vapor, leaving near‐stoichiometric SiC as the residue. However, with still increasing oxygen pick up, the final ceramic fibers become more porous and rich in silicon. The evolution of CO, CO2, and SiO generates high porosity in the absence of a sintering additive, leading to low fiber density. The inter‐connected and open porosity favors the formation of CO. In contrast, for the fibers containing aluminum (Al) or Al/B sintering additives, the pores are much smaller and essentially closed, favoring the formation of CO2. Therefore, after sintering at 1800°C, the fibers without sintering additives contain excess silicon, while those with sintering additives are near stoichiometric. Al is beneficial to the densification but it alone cannot produce fibers of high density. When B is added in addition to Al, the fibers can be sintered to nearly full density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call