Abstract

Outer edge bending is already used on the axial fan blades of air conditioners, reducing the leakage flow loss at the blade tip and suppressing the tip vortex development, thereby improving fan aerodynamic and acoustic performance. However, there are few studies on the multi-parameter design and optimization of this complicated structure, and most studies only focus on the overall sound pressure level rather than the sound quality when evaluating the fan noise. This study investigated the effects of outer edge bending structure on the aerodynamic performance and sound quality of air conditioners’ axial fans by experiments and numerical methods. Based on the orthogonal design method, the effects of three bending parameters, the circumferential starting angle, radial relative position, and the bending degree effects on the performance of the axial flow fan blade were analyzed, and the best efficiency scheme was selected. A comparative analysis of the preferred and the original bending schemes shows that the bending towards the blade suction surface successfully inhibits the development of tip leakage vortex at the blade tip, thereby achieving efficiency enhancement and noise reduction. The experimental results show that the preferred bending scheme with a 10° circumferential starting angle, 90% radial relative position, and 8% bending degree can effectively reduce the fan’s broadband noise within 200~1000 Hz by 0.54~2.68 dB (A) at different operating conditions. Additionally, the preferred bending blade with reasonably designed bending effectively reduced the loudness and roughness of the fan noise in the rated conditions, and the sound quality of the studied fan was correspondingly improved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call