Abstract
Neurons from hypothalamic paraventricular nuclei (PVN) and supraoptic nuclei (SON) from postnatal day 6-8 rats were enzymatically dissociated and separately maintained in monolayer cultures for 14 days. The osmotic pressure of the culture medium, based on Neurobasal medium (Life Technologies), was varied (255, 300 and 330 mOsm/l) by adjustment using mannitol. The survival of oxytocin (OT), vasopressin (VP) and oxytocin-vasopressin (OT/VP) coexpressing neurons were studied under these varied conditions, and the identification of the cell phenotypes in the cultures was carried out by using double-label immunofluorescence. Under control osmolar conditions (300 mOsm/l) equivalent numbers of OT and VP neurons were found in the SON (P = 0.8398) and PVN (P = 0.4721) cultures. The OT neurons' survival did not change in 255 or 330 mOsm media in the SON cultures, but the VP neurons in the SON cultures were significantly increased in 255 mOsm/l medium as compared to control (300 mOsm/l) medium (P = 0.0088). No significant changes were found in VP neuron survival in SON cultures between the 300-330 mOsm/l media (P = 0.2372). Similar data were obtained for the VP neurons in PVN-derived cultures, but the OT neurons in these cultures survived significantly better at 300 mOs/l than at 255 mOsm/l (P<0.0001), but were not significantly different at 330 mOsm/l (P = 0.1208). In general, the VP neurons were more vulnerable than OT neurons to increases of culture medium osmolarity with respect to their survival. The number of OT/VP coexpressing neurons was greater in SON-derived cell cultures as compared to PVN-derived cell cultures, and their numbers were higher in the lower osmolarity media. The effects of adding brain-derived neurotrophic factor (BDNF) to the culture medium on survival were determined. BDNF significantly increased the numbers of all three types of neurons in both PVN and SON cell cultures (P = 0.0001-0.0060). The phenotypically identified cells, cultured in the 300 mOsm/l medium, responded by depolarization or hyperpolarization when transferred to hypertonic or hypotonic perfusion salines, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.