Abstract
AbstractThe effect of gelation temperature, evaporation time, solvent and gelation bath on the structure and performance of poly(phthalazinone ether sulfone ketone) (PPESK) asymmetric ultrafiltration membrane via phase inversion are investigated; the relationship between gelation thickness of dope solutions (X) and time for several polymer solutions with different solvents and gelation bath by online optical microscope–CCD camera experimental system (OM–CC system) are obtained. The results show that gelation temperature has much stronger influence on aperture opening ratio of membrane surface (AOR) and average diameter of membrane surface (AD) than evaporation time, whereas evaporation time has greater effect on the structure factor of membrane cross‐section (S). Bovine serum albumin rejection (R) is mainly determined by surface structure; however, pure water flux (J) is controlled not only by the structure of surface and cross‐section, but also the connectivity of the pores. PPESK membranes with fine performance can be fabricated under appropriate gelation temperature and evaporation time. In addition, the membrane structure and performance vary widely when various solvents and gelation bath are employed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have