Abstract

The effects of operating parameters such as reaction temperature, space velocity, and feed gas composition on the performance of the methane dry-reforming reaction (DRM) over the Ni/Al2O3 catalyst are systemically investigated. The Ni/Al2O3 catalyst, which is synthesized by conventional wet impregnation, showed well-developed mesoporosity with well-dispersed Ni nanoparticles. CH4 and CO2 conversions over the Ni/Al2O3 catalyst are dramatically increased as both the reaction temperature is increased, and space velocity is decreased. The feed gas composition, especially the CO2/CH4 ratio, significantly influences the DRM performance, catalyst deactivation and the reaction behavior of side reactions. When the CO2-rich gas composition (CO2/CH4 > 1) was used, a reverse water gas shift (RWGS) reaction significantly occurred, leading to the consumption of hydrogen produced from DRM. The CH4-rich gas composition (CO2/CH4 < 1) induces severe carbon depositions followed by a reverse Boudouard reaction, resulting in catalytic activity drastically decreasing at the beginning followed by a stable conversion. The catalyst after the DRM reaction with a different feed ratio was analyzed to investigate the amount and structure of carbon deposited on the catalyst. In this study, we suggested that the optimal DRM reaction conditions can achieve stable performances in terms of conversion, hydrogen production and long-term stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call