Abstract

The purpose of this work is to study the effect of oil pocket shape and density on friction in reciprocating sliding. The experiments were conducted in reciprocating motion under starved lubrication conditions. Tribological tests were performed using an Optimol SRV5 tribotester. The frictional pair consisted of two discs of 42CrMo4 steel. One disc was laser textured. The oil pockets had circular and sandglass shapes. Disc samples of various texture shapes were characterized by the same pit-area ratios. The operating parameters were the same for all friction pairs. In most cases, surface texturing led to reductions in friction force value and scatter. For both dimple shapes, the best tribological properties were achieved for oil pocket density of 9%. When discs with circular dimples were tested, the highest resistance to motion was received for the highest pit-area ratio of 9%. On the contrary, the worst tribological performance of discs with sandglass-shaped oil pockets of sandglass shape were obtained for the largest oil pocket density of 22%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call