Abstract
The combined effect of suction and thermal conductivity on the boundary layer flow of oil–based nanofluid over a porous stretching surface has been investigated. Similarity techniques were employed in transforming the governing partial differential equations into a coupled third order ordinary differential equations. The higher third order ordinary differential equations were then reduced into a system of first order ordinary differential equations and solved numerically using the fourth order Runge-Kutta algorithm with a shooting method. The results were presented in tabular and graphically forms for various controlling parameters. It was found that increasing the thermal conductivities of the base fluid (oil) and nanoparticle size (CuO) of the nanofluid did not affect the velocity boundary layer thickness but depreciates with suction and permeability. The suction parameter and thermal conductivity of the base fluid also made the thermal boundary layer thinner.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have