Abstract

Whether the nonthermal effects of radiofrequency radiation (RFR) exist and how nonthermal RFR acts on the nervous system are unknown. An animal model of spatial memory impairment is established by exposing mice to 2856-MHz RFR in the range of thermal noise (≤1 °C). Glutamate release in the dorsal hippocampus (dHPC) CA1 region is not significantly changed after radiofrequency exposure, whereas dopamine release is reduced. Importantly, RFR enhances glutamatergic CA1 pyramidal neuron calcium activity by nonthermal mechanisms, which recover to the basal level with RFR termination. Furthermore, suppressed dHPC dopamine release induced by radiofrequency exposure is due to decreased density of dopaminergic projections from the locus coeruleus to dHPC, and artificial activation of dopamine axon terminals or D1 receptors in dHPC CA1 improve memory damage in mice exposed to RFR. These findings indicate that nonthermal radiofrequency stimulation modulates ongoing neuronal activity and affects nervous system function at the neural circuit level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.