Abstract
Conditioned avoidance responses (CAR) behavior is a classical instrumental response paradigm, which is widely used to study aversive conditioning and defensive motivation behavior. Previous studies have shown that dopamine D1 and D2 receptors are involved in CAR behavior; however, it is unclear in which brain regions that dopamine evokes CAR behavior. The aim of the study is to investigate whether dopamine triggers CAR behavior via activating dopamine D1 or D2 receptors in the shell of nucleus accumbens or dorsolateral striatum. The present study found that infusion of the dopamine D2 receptor agonist quinpirole, but not D1 receptor agonist SKF38393, into the shell of nucleus accumbens evoked CAR behavior in reserpine-treated rats. Whereas, infusion of neither SKF38393 nor quinpirole into the dorsolateral striatum evoked CAR behavior. In addition, infusion of quinpirole into the shell of nucleus accumbens enhanced CAR behavior in the unsuccessful trained rats without affecting the motor function in the balance beam and locomotor tests. In conclusion, activation of dopamine D2, but not D1 receptors in the shell of nucleus accumbens evokes CAR behavior. However, activation of dopamine D1 and D2 receptors in the dorsolateral striatum does not evoke CAR behavior. It is suggested that the shell of nucleus accumbens is the critical brain region for dopamine to invoke CAR behavior, and activation of dopamine D2 receptors in the shell of nucleus accumbens is sufficient and necessary to evoke CAR behavior.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.