Abstract
RMn6Sn6 (R = rare-earth) kagome magnets have been one of the research focuses in condensed matter physics, primarily due to their exotic physical properties rooted in the interplay between magnetism and nontrivial topological band structures. We reported herein the crystal growth of Cr substituted DyMn4Cr2Sn6 and investigations on their magnetotransport properties. It is unveiled that the Mn kagome layer is destroyed and the in-plane ferromagnetic exchange is consequently weakened by the substituted nonmagnetic Cr. Furthermore, the substitution apparently benefits reorientations of the Mn spins under external magnetic field. Besides, the Cr substitution results in a significantly enhanced large intrinsic anomalous Hall conductivity, reaching 600 S cm-1 at 240 K. The anomaly observed in the anomalous Hall conductivity as well as in the Hall coefficient might indicate a topological magnetic structure formed during the spin reorientation process. These findings pave the way for manipulating magnetism and electronic structures in magnetic kagome topological phases and offer a fertile ground for discovering exotic topological properties.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of physics. Condensed matter : an Institute of Physics journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.