Abstract

Abstract Flugge's shell theory and solution for the vibration analysis of a non-homogeneous orthotropic elliptical cylindrical shell resting on a non-uniform Winkler foundation are presented. The theoretical analysis of the governing equations of the shell is formulated to overcome the mathematical difficulties of mode coupling of variable curvature and homogeneity of shell. Using the transfer matrix of the shell, the vibration equations based on the variable Winkler foundation are written in a matrix differential equation of first order in the circumferential coordinate and solved numerically. The proposed model is applied to get the vibration frequencies and the corresponding mode shapes of the symmetrical and antisymmetrical vibration modes. The sensitivity of the vibration behavior and bending deformations to the non-uniform Winkler foundation moduli, homogeneity variation, elliptical and orthotropy of the shell is studied for different type-modes of vibrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.