Abstract

In this paper, based on the framework of the Flügge's shell theory, the transfer matrix approach and the Romberg integration method, the vibration behavior of an elastic oval cylindrical shell with parabolically varying thickness along of its circumference resting on the Winkler-Pasternak foundations is investigated. The theoretical analysis of the governing equations of the shell is formulated to overcome the mathematical difficulties of mode coupling of variable curvature and thickness of shell. Using the transfer matrix of the shell, the vibration equations based on the Winkler-Pasternak foundations are written in a matrix differential equation of first order in the circumferential coordinate and solved numerically. The proposed model is applied to get the vibration frequencies and the corresponding mode shapes of the symmetrical and antisymmetrical vibration modes. The sensitivity of the vibration characteristics and bending deformations to the Winkler-Pasternak foundations moduli, thickness variation, ovality and orthotropy of the shell is studied for different type-modes of vibration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call