Abstract

Nematodes, occupying multiple trophic levels in the food web, play important roles in energy flow and nutrient cycling. Most of Chinese natural grasslands have been degraded due to long-term unreasonable utilization, such as over-grazing. External nutrient input is an important way to restore the ecological function of degraded grasslands. The main and intertative effects of nitrogen and phosphorus inputs on soil nematode abundance, trophic group composition and community structure were studied in the grasslands in Xilingol League of Inner Mongolia. Totally, 38 genera of nematodes were recorded. Tylencholaimus, Aphelenchoides, Thonus, and Scutylenchus were dominant genera in this degraded grassland. Nitrogen input decreased total abundances of soil nematodes, and that of omnivores-carnivorous nematodes and plant-feeding nematodes. Phosphorus input increased total abundances of soil nematodes, and that of fungal-feeding nematodes, omnivores-carnivorous nematodes, and plant-feeding nematodes. Nitrogen input inhibited the positive effects of phosphorus input on the abundances of total nematodes, omnivores-carnivorous nematodes and plant-feeding nematodes. Nutrient inputs had no effect on nematode diversity, which would be resulted from the stable plant community. Nitrogen input significantly increased nematode maturity index, decreased plant parasitic nematode maturity index (PPI), and greatly alleviated the negative effects of phosphorus input on PPI and Wasilewska index, indicating that nitrogen input could improve soil health condition and the stability of nematodes community. Our results would help improve our understanding of the effects of nutrient inputs on degraded grassland ecosystem from a soil biotic perspective.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call