Abstract

Abstract The present study systematically evaluated base plates and Coarse Grained Heat Affected Zone (CGHAZ) properties of linepipe steels by using the controlled addition of increasing levels of niobium in a low carbon steel for comparison with other alloying combinations of Mn, Ni, Mo and V using laboratory melts and processed under simulated production conditions. The effects of niobium and other alloying elements on the mechanical properties and microstructural development, have been quantified with the intention of maintaining constant CGHAZ hardness in order that specific compositional effects can be directly compared. Characteristics of martensite and austenite (M-A) constituents in terms of size, shape and chemical composition has also been assessed. It is demonstrated that niobium additions up to 0.1 mass% in a low carbon steel design provide opportunities to improve pipeline mechanical properties, service performance and safety. For the CGHAZ, austenite grain size was limited as the niobium content increased. Weld HAZ microstructures were relatively similar with little influence of niobium content on MA character, although the hardness was noted to increase with increasing niobium content, which would be beneficial to ensure adequate resistance to weld zone softening. Bainite and small volume fractions of MA (nearly equal 2%) was a characteristic feature of CGHAZ of the materials having constant CGHAZ hardness, irrespective of chemical compositions examined. Other MA characteristics, such as size and cementite fraction, were also very similar among the steels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.